Brachial Plexus Birth Palsy: Timing and Indications

Rey Ramirez MD

Cooper Medical School of Rowan University

Orthopaedic Rehabilitation Annual Meeting

October 6, 2018

Acknowledgements

- · Scott Kozin MD, Shriners Hospital of Philadelphia
 - Pictures

Scenario

- 3 mo Diagnosed with BPBP at birth
- C5-6 Injury
- Biceps has not returned in first 3 months
- Should we operate?

Outline

- Terminology and Background
- Surgical Indications
 - Global plexus injuries
 - Upper/middle trunk injuries
 - EMG
 - Imaging
 - Physical exam
 - Future directions

Terminology for Brachial Plexus Birth Injury*

Extent of Injury

- Narakas Grade
 - Types I-4
 - 1. C5-6
 - 2. **C5-7**
 - 3. Global
 - 4. Global with Horner's

Functional Measurements

- Active Movement Scale/Toronto/HSC Scale
 - Example: completely absent elbow flexion would be AMS 0. Half range of motion against gravity would be AMS 5
- Mallet score
 - Example: hand to neck 'difficult' would be level 2
- Higher = better

^{*} Preferred term. Don't say 'obstetric' or 'palsy'

Dilemma

- At what point will surgical intervention be better than the natural history?
 - "Intervention" meaning exploration of the plexus and nerve reconstruction
- · Question One: Is there neurotmesis?
 - Needs surgery as soon as possible
- Question Two: If not neurotmesis, is this an axonometric injury that is recovering adequately?
 - Would it be better to cut out the neuroma and start over with grafts?
- Decision making algorithms attempt to answer this question

Importance of Age

- Why we wait
 - nerves need months to recover
 - Injury at birth means
 (time allowed for spontaneous recovery) = age
 - Neuropraxia 6 weeks
 - Axonometric injury- I inch per month
 - Birth humerus length is 2.5 inches
 - Thus, an axonometric injury to the upper trunk/biceps can recover in ~3 months
- Why we need to hurry
 - Muscle endplates die at 12-24 months
 - Denervated muscle leads to contractures, particularly shoulder.
 Longer period of denervation = more contracture

Narakas 3-4

- Surgery at 3 months if no recovery
- Often avulsion injuries (neurotmesis, no chance of spontaneous recovery)
- Tend to do poorly without surgery
 - Al-Qattan 2000
 - 0 of 22 Narakas 4 patients had spontaneous recovery
 - 6/20 Narakas 3 patients had spontaneous recovery
- Can be improved with surgery
 - Pondaag 2006
 - 70% of patients regained useful hand function with surgical reconstruction

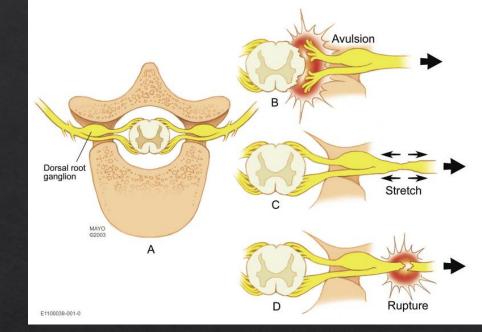
Narakas 1/2

- Current area of controversy
- Recommendations range from 3-8 months
- How do we decide whether to perform surgery?
 - Risk Factors
 - EMG
 - Imaging
 - Physical Exam gold standard

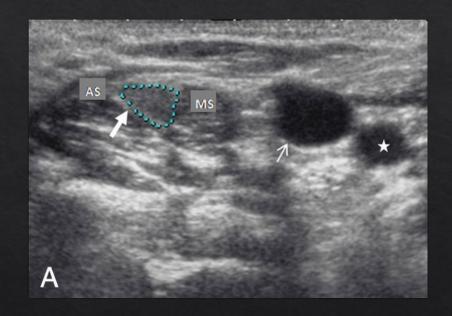
Risk Factors for Persistent BPBI

- 1. Cephalic presentation
- 2. Induction or augmentation of labor
- 3. Birth weight > 9 lbs.
- 4. Presence of Horner's syndrome
- Usefulness
 - These are present at birth
 - No invasive/expensive studies needed to determine these
- Limitation
 - population based data. Not sure how to use this to determine an individual patient's risk
- Variables used in predictive algorithms
- Only Horner's syndrome is, by itself, an indication for early surgery

EMG


- Invasive and painful test
- Benefit May show recovery before it is detectable by physical exam
 - Motor units are often seen in clinically paralyzed muscles
 - Explanations
 - Overly pessimistic physical exam
 - Overestimation of the amount of EMG recruitment due to small muscle fibers
 - Persistent fetal innervation
- Limitation Underestimates injury and overestimates chance of spontaneous recovery
- Not used by most surgeons for this reason

Imaging


- Ultrasound
- MRI (CT Myelogram)
- Goals
 - Determine if there is a plexus injury
 - Visualize the individual roots
 - Which roots? Partial or complete? Exact location?
 - Determine whether the injury will recover using radiographic signs
 - Determine preganglionic/postganglionic
 - Preganglionic = avulsion (will never recover spontaneously)
 - If postganglionic, will it recover? (is it axonometric or neurotmesis?)

Ultrasound

- Can demonstrate that there was a plexus injury
 - "periscalene soft tissue"
- Cannot visualize individual roots
- Cannot visualize preganglionic area
 - Especially in children
- Can prove there was a plexus injury, but provides little information that helps decision making

MRI

Strengths

- Can visualize pre vs post ganglionic injury
 - Pseudomeningocele
 - ♦ Sensitivity 68-96%
- Identify levels of preganglionic injury
 - ♦ Prognosis
 - Preoperative planning

Limitations

- False positive and false negative results for nerve injury
 - ♦ Pseudo != root avulsion
- Root size makes individual visualization difficult
- Traditionally done under general anesthesia

Example Pseudomeningocele on MRI

Innovations in MRI

- 3 tesla scanners!
- Bauer 2017
 - No sedation
 - Developed scoring system to predict surgery
 - Number of levels affected
 - Degree of injury (Whether there is pseudo and/or root avulsion)

Levels of Injury at the Affected Side: (C5, C6, C7, C8 and T1 only)

0 Point: Normal MRI

1 Point(s): Each level(s) injury Don't duplicate for pre- and postganglionic injuries

> If preganglionic injury present, don't count the postganglionic injury at the same level.

Max score

Preganglionic Injuries: 0 point: None

0.5 Point(s): Each level(s) of nerve rootlet thinning/T2 hyperintensity

2 Point(s): Each level(s) of pseudomeningocele 2 Point(s): Each level(s) of nerve root absence

Postganglionic Injuries:

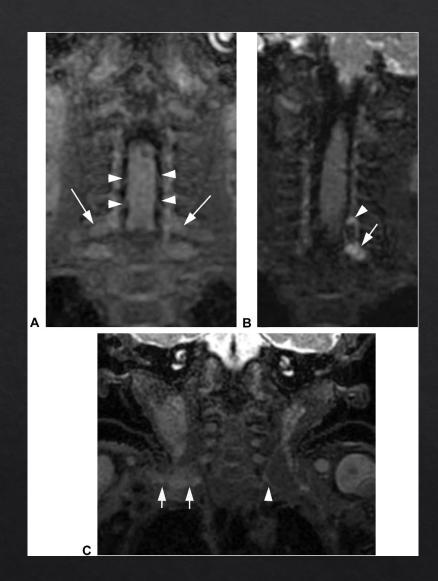

0 point: None 0.5 Point(s): Each level(s) of nerve thickening/ T2 hyperintensity 1.5 Point(s): Each level(s) of neuroma

FIGURE 3: Flowsheet used to assign the radiological score.

Representative examples of typical MRI finding using the coronal 3dimensional PD MRI sequence. A Normal preganglionic nerve roots (arrowheads) and a normal dorsal root ganglion (arrows). **B** Left C7 (arrowhead) and C8 (arrow) pseudomeningoceles and avulsed nerve roots. C Right C5 and C6 nerve postganglionic ruptures with neuromas at the trunk level (arrows), with normal left C6 postganglionic nerve appearance

(arrowhead).

Andrea S. Bauer, MD et al

Bauer et al. Results

Strength

- MRI score differentiated groups that needed surgery (score avg 12) from those that didn't need surgery (score avg 3.5)
- Further validation may demonstrate usefulness to improve <u>outcomes</u>

Limitation

- No inter or intra-observer reliability
 - Even though they had 3 people doing measurements
- Numbers too small to correlate with actual intraoperative findings
- Requires further research
- Retrospectively applied

Other Uses for MRI

- Preoperative planning
- Identify avulsions preop to estimate number of roots remaining
- If 4-5 levels look avulsed, can be prepared to do contralateral C7
 - Spine Consult

Predicting Recovery by Physical Exam

- Currently gold standard
- Biceps function is the most commonly used measurement
- Best supported by literature
 - Long-term functional outcomes
- Considers age of patient and strength of various muscle groups

Physical Exam Based on Elbow Flexion

- Most commonly used indication for surgery
- Carter 2004
 - 28 patients without biceps at 3 months, waited another 3 months
 - 22/28 recovered by 6 months and did not need surgery
 - Over half (12/22) had grade 4 (great) shoulder function
 - Recommended surgery if no biceps by 6 months
- Waters 1999
 - Large cohort study (39 patients)
 - Group that recovered biceps between 3 and 6 months had similar outcomes to group that had surgery at 3 months
 - Group that recovered biceps at 5 months did worse than patients who didn't recover at 6 months and thus received surgery
 - Recommended surgery if no biceps at 5 months

Other Recommendations

Gilbert

- 3 months
- Reasoning: patients who do not have biceps at 3 months will generally not have a full recovery. Since we know that they will likely have a full recovery, go ahead and operate

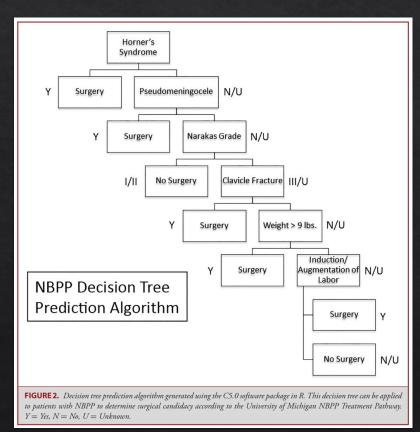
Curtis

 No difference in long-term outcomes between patients with no biceps at 3 months treated operatively/nonoperatively

Algorithms

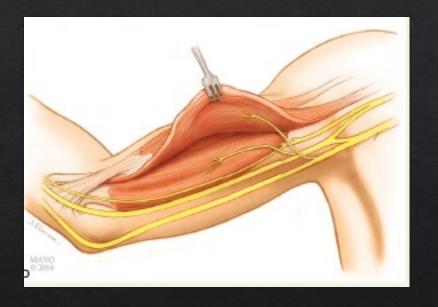
- Toronto/Hospital for Sick Children
- 3-month test score
- Based on active movement scores for elbow flexion, elbow extension, and wrist/finger/thumb extension
- Using elbow flexion alone incorrectly predicts poor recovery 12% of the time
- Score of 3.5 is threshold
- Also do 'cookie test' at 9 months

Table 3. The Hospital for Sick Children Active Movement Scale Conversion for Use in Calculating Test Score*


Muscle Grade	Converted Score
0	0
1	0.3
2	0.3
3	0.6
4	0.6
5	0.6
6	1.3
7	2.0

*Adapted, with permission, from Clarke HM, Curtis CG. An approach to obstetrical brachial plexus injuries. *Hand Clin.* 1995;11:563–580.

University of Michigan Decision Tree Generated Algorithm



- Sensitivity 0.71 specificity 0.96, PPR 0.94, NPR 0.79
- Correlated to whether it was actually decided that patient should get surgery
- Patients that the algorithm selected were
 56.7% more like to actually get surgery
- Limitation: the endpoint they use is whether a surgeon decided that surgery was needed
 - Post-hoc analysis
 - Needs to be done prospectively
 - Does not consider functional outcome of surgery vs not surgery, It does not predict when surgery will be better than natural history
- However, it may allow earlier application of an algorithm based on physical exam
- Requires further study

Nerve Transfers

- In general, have decreased the need for early surgery
- Offer reliable reconstructive options
- Have quicker recovery times
 - Time = muscle
- Example: Oberlin transfer very reliably (85-90%) restores elbow flexion and can have good (AMS7) results even at 16-18 months of age

Conclusion

- Recovery at 0-3 months no surgery
- Global plexus operate at 3 months if no recovery
- 3-6 months controversial
- No recovery by 6 months indication for brachial plexus exploration
- Future directions for research: improved MRI, validated algorithms

Thank You!

Bibliography

- Al-Qattan MM, Clarke HM, Curtis CG. The prognostic value of concurrent Horner's syndrome in total obstetric brachial plexus injury. J Hand Surg Am. 2000;25 B(2):166-167. doi:10.1054/jhsb.1999.0351.
- Bauer AS, Shen PY, Nidecker AE, Lee PS, James MA. Neonatal Magnetic Resonance Imaging Without Sedation Correlates With Injury Severity in Brachial Plexus Birth Palsy. J Hand Surg Am. 2017;42(5):335-343. doi:10.1016/j.jhsa.2017.01.032
- Smith NC, Rowan P, Benson LJ, et al. Neonatal brachial plexus palsy. Outcome of absent biceps function at three months of age. J Bone Joint Surg Am. 2004;86:2163–2170
- Waters PM. Comparison of the natural history, the outcome of microsurgical repair, and the outcome of operative reconstruction in brachial plexus birth palsy. J Bone Joint Surg Am. 1999;81:649–659.
- Wilson TJ, Chang KWC, Yang LJS. Prediction Algorithm for Surgical Intervention in Neonatal Brachial Plexus Palsy. Neurosurgery. 2017;82(3):335-342. doi:10.1093/neuros/nyx190.
- Borschel GH, Clarke HM. Obstetrical brachial plexus palsy. Plast Reconstr Surg. 2009;124(SUPPL. I):144-155. doi:10.1097/PRS.0b013e3181a80798.

