# UPDATE ON UPPER EXTREMITY PROSTHETIC DESIGN





Michael Rivlin, MD Assistant Professor

Rothman Institute, Thomas Jefferson University

#### Reverse engineering

Problem (pathology)

Normal (physiology)

Solution (bionics)



#### Take home points:



- Not everything is salvageable...
- There are other options
- As surgeons of the extremities we influence the options



### Why prosthetics?









### Orthopod: Can we help you?









#### The Dilemma





## Upper extremity prosthetic DESIGN:



#### First Mobile Hand Prosthesis



Gottfried "Götz" von
Berlichingen (1480 – 23
July 1562) also known
as Götz of the Iron Hand
designed the first known
moving prosthesis
capable of multiple
functions



#### First Mobile Hand Prosthesis



Gottfried "Götz" von

Berlichingen (1480 – 23 July 1562) also known as Götz of the Iron Hand designed the first known moving prosthesis capable of multiple functions





# Harness design – first functional prostheses

- Body powered
- Minimal versatility





## Upper extremity prosthetic DESIGN:

Muscle electrical activity

Mechanical gross motor function



## Myoelectrics - since the

#### 1960's

- uses electromyography signals or potentials from voluntarily contracted muscles
- Controls closing and opening of distal attachment
- often rejected due to the significant neuromuscular retraining required and, even under the best circumstances, the cumbersome, sequential manipulation of each joint or device





## Targeted muscle reinnervation (TMR)

 motor nerves whose primary target muscle groups have been lost are re-implanted into deliberately dennervated proximal muscles



#### Advantages:

- Increased number of independent control sites
- intuitively
- simultaneously, rather than sequentially, manipulate multiple joints or devices











Hand (N Y). 2014 Jun;9(2):253-7. doi: 10.1007/s11552-014-9602-5. Targeted muscle reinnervation in the initial management of traumatic upper extremity amputation injury. Cheesborough JE1, Souza JM1, Dumanian GA2, Bueno RA Jr3.



Hand (N Y). 2014 Jun;9(2):253-7. doi: 10.1007/s11552-014-9602-5. Targeted muscle reinnervation in the initial management of traumatic upper extremity amputation injury. Cheesborough JE1, Souza JM1, Dumanian GA2, Bueno RA Jr3.



#### **ALSO**

Following TMR procedures at Northwestern Memorial Hospital, five out of nine shoulder disarticulation patients who reported neuroma pain prior to their TMR procedure reported no neuroma pain after TMR.



## Upper extremity prosthetic DESIGN:

Muscle pattern activity

Mechanical FINE motor function



### Advanced pattern recognition

#### (APR)

- computer algorithms to decipher surface electrode data
- and subsequently associate speciffic signal patterns with
- Requirement: have undergone TMR







#### The patient factor ...

everyone is different





### THE FUTURE





### Function

2

### Osteointegration

- An emerging surgical technique for direct skeletal attachment of prostheses which may one day render sockets antiquated and obsolete for many patients.
- Permanent coupling of metallic implants to the skeleton.
- Works for OMFS, dental implants... ortho?



Branemark , J. Rehabil. Res. 2001 Tillander CORR 2010



#### Osseointegrated percutaneous prosthes

es



Survival rate at two years (92%) enhanced prosthetic use and mobility, fewer problems and improved quality of life

A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients.

<u>Brånemark R<sup>1</sup>, Berlin O, Hagberg K, Bergh P, Gunterberg B, Rydevik B.</u>

Bone Joint J. 2014 Apr; 96-B(4): 562.

### New horizons



iLimb - Touch Bionics: Customization of function via iPhone App



## Upper extremity prosthetic DESIGN:

Neurological electrical



motor function



Experimental implant in motor cortex can grant control of extra (third) arm in primates and in early human experiments







### Targeted Sensory

#### Reinervation



#### Sensation 3 cm BSD Chest Strong sensation localized to ventral Diffuse sensation localized to ventral surface Strong sensation localized to dorsal surface Diffuse sensation localized to dorsal surface



#### Paterned TSR



Sensation is felt as if on the hand in the following areas

- 1.First digit
- 2.First and second Digit
- 3.Third digit
- 4.Fourth digit.
- 5.Fifth digit



## We are not at the finish line yet...

... sometimes its harder than it looks





#### Questions

Thank you